3akapnarceKi ¢inonoriudi cryaii

UDC 81:004.9
DOI https://doi.org/10.32782/tps2663-4880/2021.16.44

USING THE BASICS OF REGULAR EXPRESSIONS
IN TRANSLATION AND TEXT PROCESSING

BUKOPUCTAHHA OCHOB PETI'YJIAPHUX BUPA3IB
II{ YAC HEPEKJIAAY TA OBPOBKH TEKCTY

Ivashkevych L.S.,

orcid.org/0000-0001-7166-5331

Candidate of Philological Sciences, Associate Professor,

Associate Professor at the Department of Theory, Practice and Translation of German
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

The article shows why it is worth introducing the basics of regular expressions in translation curricula. It briefly explains
what regular expressions are and presents simple examples of their functionality, illustrating how regular expressions help
execute search-and-replace tasks, not accessible for the most commonly used WYSYWIG-text processors.

Regular expressions can be widely used in translation processes, namely while defining parsers and segmentation
rules; while searching certain words or strings and replacing them; extracting strings for translation; creating checklists
for quality assurance; post-editing machine translation, improving the quality of translation memories. Here we show how
regular expressions used in a CAT-tool environment help accomplish such tasks as finding different spellings of the same
word, finding word forms, finding the source and target segments with different capitalization, replacing the decimal
separator, finding and deleting the odd article in the machine-translation output.

The basics of regular expressions are explained in the article divided into five main groups: literal characters,
metacharacters, quantifiers, characters classes, and groups. Each of these groups is an essential part of regular
expressions functionality. Even each one of them separately can significantly widen the search-and-replace possibilities
and simplify other text-processing tasks. In many cases, even using one single tool from the regular expressions toolbox
can measurably save time for text processing.

Besides, regular expressions are also integrated as a tool in many text-processing surroundings like corpus managers
or text editors. They are widely used in programming in the form of special libraries. Several examples of such usage are
also given at the end of the article.

Key words: regular expressions, translation processes, text processing, programming, corpus managers.

Y cTaTTi npOAEMOHCTPOBAHO, YOMY OCHOBM PEryNSAPHUX BUPa3iB BApTO BKIOYATK 40 NPOrpam nigroToBku Nnepeknagadis.
CratTa KOpOTKO po3noBigae Npo Te, WO Take perynsipHi BUpasu Ta sika ixHa yHKLiOHaNbHICTb, iMCTPYOYM Lie NPOCTUMU
npuknagamu, sk perynspHi Bupasv 4O3BONA0Tb iCTOTHO PO3LLUMPUTU MOXITMBOCTI MOLLYKY, HAsiBHI Y 3BUYaNHUX TEKCTOBUX
penakTopax, Wwo npautotoTb 3a npuHumnom WYSYWIG (what you see is what you get).

PerynsipHi Bvpasu LUMPOKO BUKOPUCTOBYHOTbCA B MNepeknagaubkux npouecax, a came y TakuMx MOro eranax, sk
BU3HAYEHHS MpaBuIl MApCUHTy Ta CErMEHTYBaHHS, MOLIYK NEBHWX CMiB Ta TEKCTOBMX (hparMeHTiB Ta X 3aMmiHa,
eKcTparyBaHHsa TeKCTy AN nepeknagy i3 Kogy Yum TeriB, CTBOPEHHS CMMUCKIB YaCTOTHUX Af1S NEBHUX MOB Ta MOBHMX
nap NOMMNOK Ans 3abe3neyveHHs Kpawloi sSIKOCTi nepeknagy, noctpedaryBaHHs MalUMHHOMO nepeknagy, NMoKpaLlleHHSs
SIKOCTi Ta KOHCUCTEHTHOCTI nepeknagalbkux naMm'sTei. Y ctatTi HaBefeHi Npuknagn KinbKox i3 LuMx 3aBAaHb, BUKOHAHI
y cepefoBuLLi nporpamHoro 3abesnedyeHHs 4na nepexknagy.

CratTa NponoHye 03HaNOMUTUCS 3 OCHOBaMU PErYNApPHUX BUPasiB, AN 3pYyYHOCTI PO3ginvBLUM iX HA M'ATb FONOBHUX
KaTeropii: 6ykBanbHi CUMBONW, METAaCUMBOMU, KBaHTUIKaTopK, knacu cuMBoniB Ta rpynu. OnaHyBaHHSA HaBiTb OAHi€l
3 HUX MOXe ICTOTHO PO3LUMPUTY MOXNMBOCTI (OYHKLOHamMy MOLLYKY Ta 3aMiHW Ta NonerwmT BUKOHAHHS iHLWWX 3aBOaHb,
NOB’AA3aHuX i3 06POBKOID TEKCTIB, LLIO AONOMOXE BiAYYTHO 3a0LLaanTL Yac.

Kpim Lboro, perynsipHi Bupasu iHTerpoBaHi B 6arato cepegoBuLy Ans poboTtu i3 TeKCTaMu, AK-TO KOPMNYCHI MEHEMKEPU
Ta TeKCTOoBi pedakTopu. Y BinbLIOCTi MOB NporpamyBaHHS iX (OyHKLiOHaN BUKOPUCTOBYETLCA Yepes iMMopT crevianbHux
6ibnioTek. Y cTaTTi HaBeAeHi ABa NPUKNaAN BUKOPUCTAHHS PETyNSPHMX BUPA3iB y TEKCTOBKX CEPEAOBMLLAX — Y KOPMYCHOMY
MeHeKepi Ta iHTepakTMBHOMY CepefoBuLLi Ans nporpamysaHHs repl.it nig yac nporpamysaHHsi MmoBoto Python.

KntouoBi cnosa: perynsipHi Bupasu, nepeknagabki npouecu, NporpaMmyBaHHs, KOPNyCHi MeHemxepw.

Introduction. According to the Oxford Handbook
of Computational Linguistics, regular expressions
are expressions that describe a set of strings or
a set of ordered pairs of strings [8]. In other words,
a regular expression is a pattern describing a certain
amount of text. Regular expressions were developed
in the 1950s by the American mathematician Stephen
Cole Kleene, and their name comes from the math-
ematical theory on which they are based. Since

1980, two foremost regular expression syntaxes were
developed, POSIX and Perl [2; 9].

Regular expressions are widely used in text pro-
cessing tasks [3]. Their typical applications include,
f.e., data scraping, data validation, data wrangling,
parsing, production of syntax highlighting systems,
etc. [6]. Regular expressions are integrated into many
working surroundings like text editors, translation
tools, corpus managers and are also used in program-

237

Bunyck 16

ming processes. Almost all programming languages
provide the functionality of regular expressions
either built-in or via libraries.

The purpose of this article is to demonstrate,
that the functionality of regular expressions can
essentially widen the possibilities of text process-
ing, significantly saving time need for different kinds
of tasks and should be therefore implemented into
the linguistics and translation curricula.

Discussion. Regular expressions allow effectively
search and replace certain strings in texts of any
type. Here are some simple examples of what one
can match in text using the very basics of regular
expressions.

In Figure 1 you can see telephone numbers in dif-
ferent formats. Imagine you have to match them all
at once in your text and, for example, copy and paste
them into your database. The Figure 2, the way is
shown how you can do this with the help of a regular
expression typed below in red. Although this regu-
lar expression can look complicated at first glance,

it is very simple and clear after you learn the basics
of regular expression syntax.

In Figure 3 you can see how one can match all
long words (in this case, words consisting of 12 let-
ters and more) in a text with another simple regular
expression.

There are many resources that can help you to
learn the basics of regular expressions and to prac-
tice them. I want to recommend you an online tuto-
rial RegexOne.com, where you are successively
introduced to the principles of regular expressions
based on practical tasks, and an online editor RegExr.
com, where you can conveniently search with regu-
lar expressions in your texts. Though, if you need to
work with big texts, you should install some desk-
top text editor, which will not have restrictions on
the text length, f.i. Atom.

1. Regular expressions in translation processes

Regular expressions are used in many different
stages of translation processes [7], among others in
following:

Fig. 1. Task of finding telephone numbers of different formats

Fig. 2. Finding telephone numbers of different formats with regular expressions

238

3akapnarceKi ¢inonoriudi cryaii

Fig. 3. Finding all words of 12 and more letters

3 4 LRy sters W Fragment Matches - painting_systems ﬁ'Ccrca:erce Search ¥

= ST <
Comments 7 TQAs(0) &/ Messages

TryPerlectMatch.doc schdiff [Translabon] SecondSample. docx sdlxldff [Transiation SampleFresentabion pptx sdlliff [Translabon) SampleXML_DITAxmi sdbdkfi [Trane

Hardtop is a two-pack polyurethane W

3

4 As togcoat over an epoxy/ epoxymastic system where a durable finish is required in aggressive atmospheric exposure.
5 Imperite 300 is a high gloss two-pack polyester-polyurethane tog coat with excellent gloss and colour retention.

6 Asatopcoat over an epoxy system where a durable, high gloss finish is required in aggressive atmospheric exposure,
7 Jotacote 605 is a two-pack high build, high solids surface-tolerant epoxy coating.

g For protection of steel, galvanized steal, aluminium and concrete in aggressive locations.

o000

Fig. 4. Task to find different spellings of the word

—in parsers and segmentation rules;

— searching certain words or strings;

— replacing words or characters;

— extracting strings for translation;

— creating checklists for QA;

— QA of translation memories [4];

— post-editing MT [5; 1].

Below I will show some examples of how exactly
they can be used.

1.1. Finding different spellings of the same word

Regular expressions can help you effectively pro-
cess your text when you have to repeat some actions
with strings many times.

Thus, if your text contains different writing varia-
tions of the same word as shown in Figure 4, you can
easily match all of them and replace them with one
form to reach consistency in the whole text. For that,
you just use a simple regular expression consisting
of two signs: “.” means any symbol, and “?” means
that the previous symbol is optional (Fig. 5). In such
a way you can find all three forms, “top-coat”, “top-
coat” and “top coat”.

In Figure 6 you can see how you can with the help
of regular expressions replace non-consequent spell-
ing of the word with the consequent one.

1.2. Finding word forms

Not all CAT-Tools support flexions search. If you
work with inflected languages, it might be beneficial
for you to use simple regular expressions to find all
the word forms you need at once. Sign “.” means any
digit, sign “+” means one or more times. So, their
combination helps you to find the stem “momyn” with
any possible continuation (Fig. 7).

1.3. Finding the source and target segments
with different punctuation

Regular expression can also be used to check
whether the source and target sentences have the same
punctuation. Thus, in Figure 8 you can find all seg-
ments in your translation, where the source has a dot
in the end and the target does not, and correct it.

1.4. Finding source and target segments with
different capitalization

Thanks to the option to refer to the beginning
of the line, regular expressions can also be helpful while

239

Bunyck 16

3 Hardtop 15 & two-pack poi\ue'.ranqm

As I.\‘\'ﬁa; OVEr AN Bpaxy/ epoxymashic tystem wharsa A curable fnish is required in ARPrESSIVE MMOSORENE Sxposre
Imperite 300 is @ high gloss two-pack polyester-polyurethane 190 coat with axcellont gloss and colowr retontion

A3 2 1opcoat over #n epoxy system wherne & durable, high ghoss Aindsh Is required in aggressive atmospheric exposure.
Pllot 11 1s a single-pack alkyd based todcoat for both externor and INtenor use.

Y"e:ox in a traditonal aliyd systam suitable for steel and woodwork.

Ploner W” » single-pack acrylic resin based top-coat.

R ST

Asvorced Dvsphey Filler

Y,i;:p‘, Fites ! Clear vh Save Y_ Load

O Cortert Fiter Atrbutes Commerts Document Snc

Dopley segrerts cortaning D foflowng text n

top.?coat w.

Target
) Raguiar Bxpression

[7] Case Seratwve

Fig. 5. Finding different spellings of the word with regular expressions

Alkydprimer is & single-pack alkyd based primer [— *
&5 a primar for stesl and aluminiom structures as part of a suita
Hardbog 15 8 two-pack polyurethans Log-Coal

£5 bop-poal over an gpon/ epoxymastc ftem where 2 durakl
BRI

Impesite 200 15 a bigh ghoss twe-pack potvester-polyurethans i
A5 3 10p-00a] pver an gpouy Syrtem wihers & duratde, high ghosi
Jotacote 605 13 a two-pack high build. high solids surface-tolera
For protecnon of sieel, galvanged steel, alwminiem ang concrg

Fewd Replace

Penguard HE i a high build, two-pack epory costing batad on g
Easy 1o sand.

Penguard Spocial is a kigh build, two-pack zsinc phosphate pigm [Msizh cone
miclecular weight

&5 an antl cormosive primaer and intenmiediate ccating for conmos)
Easy 1o sand

Pilot il |5 a singhe-pack alioyd besed top-coat for bath exterior at
Tap-goat in 3 traditional alkyd system suitable for steel and wof oo Se—m

~ | Fird gpeiens

Mg oh whese wani
[] Searchium

2 e

Good weslher and colur stability.
G hading pawer
Figner top-coat & & stogle-pack acrylic mesin based top-goal

[Fetet] Fucisce | | Feclsce® | Oote et

Finishing coat for protection of steel and concrete in a variety of climanc conditkons, extedor @nd intenor

Find: (t|T)op.?coat
Replace: $1op-coat

Fig. 6. Considering the different capitalization while searching and replacing

checking whether segments have equal capitalization.
In Figure 9, you can see an example where target seg-
ments start with lowercase words, and simple regexes
used within a CAT-Tool help identify such cases.

1.5. Replace the decimal separator

In Figure 10 you can see the regular expression
with which we can easily change the decimal separa-
tor in different document segments at once. In the Find
line, you have two groups consisting of one or more
digits, and these groups are divided with a comma.
In the Replace line, you refer to these groups with
the sign $ and their number and put a dot between
them, replacing the comma as a decimal separator.

1.6. Find and delete the odd article in
the machine translation output

Machine translation output often contains reoc-
curring mistakes. You can use regular expressions
to correct particular type of such mistakes. For

example: in Figure 11, you can see the odd article
“el,” which was placed before the different names
of the operating systems: Windows, Linux, Mac OS.
With regular expressions, you can remove the article
in all these cases. Thus, in Figure 12 in the Find line,
we are looking for all three names of operational sys-
tems alternatively, before which “el” is placed, hav-
ing built a corresponding group, and replace it with
the group only, without article, in the line Replace.

2. The basics of regular expressions

Regular expressions are not difficult to learn,
and even their basics can be very useful in translation
processes. It is important to understand the principles
how regular expressions work and not to learn all
the technical signs and their functionality by heart.
To better conceive the functionality, it may be helpful
to divide the characters, which are used while writing
regular expressions, into several categories.

240

3akapnarceKi ¢inonoriudi cryaii

e = ' -

e AT AT AR 40
BcTaHoBN@HHA moaynis nam’aTi SO-DIMM ‘ 2
1106 perasossme naw ien SO.CIMM, mecosaitze Tas xpoac L O Cowt Tawiotim Comen [
m-unm%%ncynmwmmml SO-Dovn w & -
3 EVOLDM D POY E Dy sty e P Ve Vot

BeTanTe oo xpai amgg naw' AT SO-DIMM y pox e w Sosee
HammOan, 1 Joesel ipai AT (REDE SO DV R Topa
A0 QUCATORN M0 IATHOH T

Nepempen MO NaM'RTI NEDEPANOBANO HE CTODIHY CHCTEASE NBMATL » 2 Feple Ewesan
¥ pass » L] Comer Sermtien
BunyueHHs mogynis nam’arti SO-DIMM

LLOG Eimy\wtv Saodyte naar T SO-DIMM, BvcomadTe T epomt x:

Poosenimh JaTnoas po'ovy nasd'sm SO-DIMM =8

Buwhamh paapere rau AT SO 0 pOYEMYy, TRISAaON ROND 33 epai m

TSEs]

Moayn.+

ey mobes
Toot eutye~ Faphe Expueme “ten

Toawdt 12 11 nagmerts

Fig. 7. Finding word forms in inflected languages

Sorgh 0571t T it Secreten preten T rrdlaen oS80T Mentn poden toteen T amitor o SAE Ohelt v awieer b Fa LT 0 # Tt 150 UST b 11 Crmdlens 1Sk 08

3 OmrpaT s o stwars Coegl o hoe Sedvan

5 ‘).Nh:"'!i(:h‘(.‘lwll?lll”m- kmuunmwvm-"m!_
,hlm\llphdwmp:n,nﬂr}-"uup:mom; Das beadater £215 S wemn P daact it Omeal 19 rediinuse hinsse £353 02 fom ageenn Adindeengen

N NSNS

Ll
1 5l pogasvag €1 Da oy o0 saedag ts be dome Abu Piggameonns 6 NN 81 trsip Aedpbe. S wiedg wein mtt
o L= Lot
dvamced gy .

b AR AN AR AT

O lmt Reiotan Cowen Teuser! e
Vi worem crtas e owrg e n

£ S iwman

[Com ot

Fig. 8. Checking punctuation in source and target segments

BB 7erm Ascogniton Bk Termbase Search

Wm.mﬂlﬁﬁm1nﬂ SampleXML_DITA ol sdbeifi [Travalator] dasonphon_products rif [Translabon en-US-4&-DET desonpleon_products_systeess if[Translabon &
e . 3 EETR

1 Powerful tools F nuc-nil;g.o Werkzeuge

4 Inrn{pﬂ :pulllng chackar F 4 intagrigra Rnth[:chmnp;ﬂung

5 Caompalible wilh othér translalson memaony applications (TMX, TTX, TEML, XLIFF, > mpatibel mel anderen Transiation Mamon:-Amvendur
SDLXLIFF)
L fessin tuf | y o |

W Apply Fiter "W Clear | Save W Load

'a':ﬂiﬂ't Fiter fevbotes. Commarts Document Siruetos

Fig. 9. Checking capitalization in source and target segments

2.1. Literal characters cial aspect: those characters, for which some regex

These are the actual characters contained in functionality is reserved, must be escaped with a “\”

the string we need to find, f.i., letters, numbers, sign, so that to search for a dot, you have to type “\.”
punctuation etc. For this category, there is one spe- and not just “.”.

241

Bunyck 16

| =

ion en-US-de-DE sS4
927.30 i
13 o
2378 b

489 42

-

Find: (\d+),(\d+)
Replace: $1.$2

onen-Us-de-UE" . 0500 Tronglstonen-Ui5-os £5] OS5 pew.bd [Trenslation en-UsS-es-ES]

Find and Replace % |

Lok in
Current Document e

— Find ppbons

[Match case

[Mateh whieds ward

[] Search up

B Use

Regular expressions v

Fapiare Rapiace 4 Cloas Help

Fig. 10. Replacing the decimal separator

HUQ r@_gﬁqsruk-UA sdbdiff [Transiatio] tools.txt_en-US_de-DE sdbdif [Translatio] descnption_products rtf_en-US de-{

2

, The Shrew Soft VPN Client is a free IPsec Client for FreeBSD and Linux based operating 7
systems.
2 VPN semvice for Mac OS X and Windows

3 VPN Unlimited 1s a high quality VPN senice without imits on traffic bandwidth and connection 7

speed

4 The app is available for Mac OS X and Windows computers with the same pncing plans and P 4
singla account
L OS nw s |

i [‘[{aﬂ;lxmn’ decimals. txt [Transiation en-US-de-DE" OS tat [Transkation en-US-05-ES]"

Shiew Sofd VPN Clentbs un clente [Psec gratuto para sistemas operatos basados en FreeBSD y 8l Linux

Semvicio VPN para gl Mac OS Xy &l Windows

VPN Unlimsted es un semcio VPN de alta calidad sin limites en el ancho de banda del trafico y 1a velocidad de conexién

La aplicacidn estd dispomble para compu(odonso_lMac 08 Xy gl Windows con los mismos planes de precios y una sola cuenta

Fig. 11. Odd article in the MT-output

However, if you, for example, want to find all
the prepositions “for” in a text, the usual search finds
also “for” as a part of the word. You can add spaces
around “for”, but then you won’t find places with
punctuation after it. To solve this problem, we have
a further category of the signs in regular expressions.

2.2. Metacharacters

These characters help us to find some classes
of signs in a string. Thus, \d finds all digits, whereas
\D., to the contrary, finds all non-digit charac-
ters. Similarly, \w finds all alphanumeric symbols,
whereas \W finds all non-alphanumeric symbols.

Next, \s finds spaces, \S finds non-spaces, \b finds
all word boundaries.

So, to find for only as a separate word even before
some punctuation, you have to use the word boundar-
ies: \bfor\b.

Another very widely used metacharacter is ““.””, which
stands for any character. So, for example, the search \
bth.n\b will find “thin”, “than,” and “then’ at once.

2.3. Quantifiers

Quantifiers allow us to specify the quantity
of the particular character or group of characters.
There are several ways to indicate it:

242

3akapnarceKi ¢inonoriudi cryaii

L [Translabof decimals txd[Translsbon en-UUS-de-DET 05 txt [Translston en-US-es-ESI

Sheew Sofd VPN Chanl s un cliente [Psec gratuilo para sistemas operativos basados en EreeBSD Vs Liniix

Seracio VPN para Hec 05 X y Windows

VPN Linlimited es un senicio VPN de alta calidad sin limites en &l ancho de

La aplcacion asta disponibla para :nm;utadﬁm% 0S X y Windows con lo

Find:

\bel (Windows|Linux|Mac)\b)
Replace:

$1

Find and Replace

Find what
[ie v coms Lo Mo o
Raplsce with
51

Linok i
Cument Documant

= Find gptions
[[] Match case
[C] Match whobe wond
[[] Searchup
b Use
Regulsr sxprmssiony

Feplace Feplacs ~

Fig. 12. Removing the odd article while post-editing

h=jul 4
{EP Pa

Fig. 13. Task to extract a string for translation

* stands for 0 or more repetitions of the character.
Thus, \btaken™\b finds strings like take, taken, tak-
enn, takennn.

+ stands for one or more repetitions. For example,
\d+ finds numbers of one and more digits like 3, 34,
345, 3456, etc.

? stands for optionality, i.e., O or 1. Thus, search
\bstudents?\b finds both forms student and students.

{} allow specifying the particular number
of the characters. Thus, 11{2} means we want to find
all double 1l in words, while \b[a-z]{6,9}\b means we
search for all words with the length of 6 to 9 char-
acters. The form \b[a-z]{9,}, further, finds all words
of 9 and more characters.

2.4. Character classes

Square brackets help us to search for some range
of characters. In particular, if you just list the char-
acters within square brackets, you then search any

of the listed ones. Thus, [abc] find any letter a, b or
c only one time, [new] finds one of the listed charac-
ters one time, etc. If you use a dash, you can search
within some range: [a—z] finds any letter from a to z
and [0-9] — any digit from 0 to 9. Circumflex helps
to search all except for the listed characters: [“a—k]
finds all letters after k in the alphabet.

2.5 Groups

Parentheses help to find precisely this particu-
lar string. F.i. \b(new)\b finds exactly the word new
and nothing else. Besides this, parentheses allow us
to operate with these groups by backreferencing them
with the sign $ and the number of the group. Thus,
to extract the author in the metadata in Fig. 13, we
can use the expression author={([\w\s,]+)} and then
replace it with the group backreference $1. Using
groups is the perfect way to extract from text the nec-
essary data.

243

Bunyck 16

19 G the AT American J] Catholic |
20 10 academic J) rank NN1 or CC
21 N1 . YSTP Of_IO the AT two_MC
22 , YCOM and_CC got_VVD a_AT1
23t CST he_PPHS1 had VHD a_AT1
24 of 10 around RG 20% NNU in_lI
25v NN1. YSTP Meyner NP1 's GE

Search Term = = Regex
[A-Za-z]+ || [A-Za-z]+ NN

[-::'CLL.'r_'c':timmI_Jj achievement NN1
professional J] achievement NN:
cherished_]J achievements_NN2
|-mo _J) acknowledgment_NN1 in_
wide_J] acquaintance_NN1 with_|
planted J) acreage NN1 and CC
Green || Acres NNU2 plan VWO f
Search Window Size
Advanced 50 :

Fig. 14. Regular expressions functionality in corpus manager

main py

import re
with open("BRUK.txt") as f
corpus = f.read()
llll'll)“’ sentlences =)
sentences = re,split(*|.!”?]", corpus)
with open("sentences txt™, "w*) as
for sentence In sentences

sentence = sentence.strip()
L1 sentence !'= °

number sentences = nunber sentencess+]
Int ("Number of sentences:”, nuader sentences

1 corpus only letters = re.sub(r*\W', , corpus)
16

nusber words

with open(“words.txt", *w*) as f:

for word in corpus only letters.split(]):
f.write(words+"
nunber_words = nunber words +
int{"Number of words:*, nuzber words]

avarage w = number words/nunber sentences
print{“Avarage words in sentences:”, avarage w)

Fig. 15. Regular expressions used in Python code

3. Regular expressions in text processing
environments

We have already described above, in section 2,
how regular expressions can be used in transla-
tion processes. Except for this, they are also built
in many text processing environments like corpus
managers or text editors. Programming languages,
too, have special libraries for regular expressions,
which allow using their functionality while writ-
ing code.

In Fig. 14 you can see an example of how reg-
ular expressions can be used in the AntConc cor-
pus manager for searching all the constructions
“adjectivetnoun” in the annotated corpus:

In Fig. 15 you can see an example, how one can
import a regular expression library while writing
code in Python and use regular expressions to split
the corpus in sentences by such punctuation marks as
“7, “I”and “?”.

After learning the basics of regular expressions, pre-
sented above, you can already use them for your spe-
cific purposes while processing text in different ways.

Conclusions. As we can see, the basics of regu-
lar expressions are not complicated to learn and they
can give us a lot of advantage while processing text in
many different surroundings. Thus, we consider it to
be reasonable to integrate the course of regular expres-
sions into the translation and linguistic curricula.

REFERENCES:
1. Arenas A.G., Moorkens J. Machine translation and post-editing training as part of a master’s programme. The

Journal of Specialised Translation. 2019. Pp. 217-238.
2. Campeanu C., Santean N. On the intersection of

regex languages with regular languages. Theoretical

Computer Science. No. 410 (2009), Pp. 2336-2344. URL: https://core.ac.uk/download/pdf/82684254.pdf.

244

3akapnarceKi ¢inonoriudi cryaii

3. Dorosz K., Szczerbinska A. Enhancing regular expressions for Polish text processing. Computer Science.
Vol. 10, 2009. Pp. 19-35.

4. Gintrowicz J., Jassem K. Using Regular Expressions in Translation Memories: Systems Science. January
2008. Pp. 87-92.

5. Guzman R. Automating MT post-editing using regular expressions. Multilingual. No. 90. 2007. Volume 18.
Issue 6. Pp. 49-52.

6. Mosel U. Advances in the accountability of grammatical analysis and description by using regular expressions.
Language Documentation & Conservation Special Publication. No. 4 (October 2012). Electronic Grammaticography
ed. by Sebastian Nordhoff. Pp. 235-250.

7. Regular Expressions: An Introduction for Translators. The ATA Chronicle. American Translators Association.
URL: https://www.ata-chronicle.online/highlights/regular-expressions-an-introduction-for-translators/.

8. The Oxford Handbook of Computational Linguistics. OUP Oxford. 2004. 786. P. 754.

9. Wang P., Bai G.R., Stolee K.T. Exploring Regular Expression Evolution. Computer Science. 2019. URL:
https://wangpeipei90.github.io/papers/saner2019_preprint.pdf.

245

