
237

Закарпатські філологічні студії

UDC 81:004.9
DOI https://doi.org/10.32782/tps2663-4880/2021.16.44

USING THE BASICS OF REGULAR EXPRESSIONS
IN TRANSLATION AND TEXT PROCESSING

ВИКОРИСТАННЯ ОСНОВ РЕГУЛЯРНИХ ВИРАЗІВ
ПІД ЧАС ПЕРЕКЛАДУ ТА ОБРОБКИ ТЕКСТУ

Ivashkevych L.S.,
orcid.org/0000-0001-7166-5331

Candidate of Philological Sciences, Associate Professor,
Associate Professor at the Department of Theory, Practice and Translation of German

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

The article shows why it is worth introducing the basics of regular expressions in translation curricula. It briefly explains
what regular expressions are and presents simple examples of their functionality, illustrating how regular expressions help
execute search-and-replace tasks, not accessible for the most commonly used WYSYWIG-text processors.

Regular expressions can be widely used in translation processes, namely while defining parsers and segmentation
rules; while searching certain words or strings and replacing them; extracting strings for translation; creating checklists
for quality assurance; post-editing machine translation, improving the quality of translation memories. Here we show how
regular expressions used in a CAT-tool environment help accomplish such tasks as finding different spellings of the same
word, finding word forms, finding the source and target segments with different capitalization, replacing the decimal
separator, finding and deleting the odd article in the machine-translation output.

The basics of regular expressions are explained in the article divided into five main groups: literal characters,
metacharacters, quantifiers, characters classes, and groups. Each of these groups is an essential part of regular
expressions functionality. Even each one of them separately can significantly widen the search-and-replace possibilities
and simplify other text-processing tasks. In many cases, even using one single tool from the regular expressions toolbox
can measurably save time for text processing.

Besides, regular expressions are also integrated as a tool in many text-processing surroundings like corpus managers
or text editors. They are widely used in programming in the form of special libraries. Several examples of such usage are
also given at the end of the article.

Key words: regular expressions, translation processes, text processing, programming, corpus managers.

У статті продемонстровано, чому основи регулярних виразів варто включати до програм підготовки перекладачів.
Стаття коротко розповідає про те, що таке регулярні вирази та яка їхня функціональність, ілюструючи це простими
прикладами, як регулярні вирази дозволяють істотно розширити можливості пошуку, наявні у звичайних текстових
редакторах, що працюють за принципом WYSYWIG (what you see is what you get).

Регулярні вирази широко використовуються в перекладацьких процесах, а саме у таких його етапах, як
визначення правил парсингу та сегментування, пошук певних слів та текстових фрагментів та їх заміна,
екстрагування тексту для перекладу із коду чи тегів, створення списків частотних для певних мов та мовних
пар помилок для забезпечення кращої якості перекладу, постредагування машинного перекладу, покращення
якості та консистентності перекладацьких пам’ятей. У статті наведені приклади кількох із цих завдань, виконані
у середовищі програмного забезпечення для перекладу.

Стаття пропонує ознайомитися з основами регулярних виразів, для зручності розділивши їх на п’ять головних
категорій: буквальні символи, метасимволи, квантифікатори, класи символів та групи. Опанування навіть однієї
з них може істотно розширити можливості функціоналу пошуку та заміни та полегшити виконання інших завдань,
пов’язаних із обробкою текстів, що допоможе відчутно заощадити час.

Крім цього, регулярні вирази інтегровані в багато середовищ для роботи із текстами, як-то корпусні менеджери
та текстові редактори. У більшості мов програмування їх функціонал використовується через імпорт спеціальних
бібліотек. У статті наведені два приклади використання регулярних виразів у текстових середовищах – у корпусному
менеджері та інтерактивному середовищі для програмування repl.it під час програмування мовою Python.

Ключові слова: регулярні вирази, перекладацькі процеси, програмування, корпусні менеджери.

Introduction. According to the Oxford Handbook
of Computational Linguistics, regular expressions
are expressions that describe a set of strings or
a set of ordered pairs of strings [8]. In other words,
a regular expression is a pattern describing a certain
amount of text. Regular expressions were developed
in the 1950s by the American mathematician Stephen
Cole Kleene, and their name comes from the math-
ematical theory on which they are based. Since

1980, two foremost regular expression syntaxes were
developed, POSIX and Perl [2; 9].

Regular expressions are widely used in text pro-
cessing tasks [3]. Their typical applications include,
f.e., data scraping, data validation, data wrangling,
parsing, production of syntax highlighting systems,
etc. [6]. Regular expressions are integrated into many
working surroundings like text editors, translation
tools, corpus managers and are also used in program-

238

Випуск 16. Том 1

ming processes. Almost all programming languages
provide the functionality of regular expressions
either built-in or via libraries.

The purpose of this article is to demonstrate,
that the functionality of regular expressions can
essentially widen the possibilities of text process-
ing, significantly saving time need for different kinds
of tasks and should be therefore implemented into
the linguistics and translation curricula.

Discussion. Regular expressions allow effectively
search and replace certain strings in texts of any
type. Here are some simple examples of what one
can match in text using the very basics of regular
expressions.

In Figure 1 you can see telephone numbers in dif-
ferent formats. Imagine you have to match them all
at once in your text and, for example, copy and paste
them into your database. The Figure 2, the way is
shown how you can do this with the help of a regular
expression typed below in red. Although this regu-
lar expression can look complicated at first glance,

it is very simple and clear after you learn the basics
of regular expression syntax.

In Figure 3 you can see how one can match all
long words (in this case, words consisting of 12 let-
ters and more) in a text with another simple regular
expression.

There are many resources that can help you to
learn the basics of regular expressions and to prac-
tice them. I want to recommend you an online tuto-
rial RegexOne.com, where you are successively
introduced to the principles of regular expressions
based on practical tasks, and an online editor RegExr.
com, where you can conveniently search with regu-
lar expressions in your texts. Though, if you need to
work with big texts, you should install some desk-
top text editor, which will not have restrictions on
the text length, f.i. Atom.

1. Regular expressions in translation processes
Regular expressions are used in many different

stages of translation processes [7], among others in
following:

Fig. 1. Task of finding telephone numbers of different formats

Fig. 2. Finding telephone numbers of different formats with regular expressions

239

Закарпатські філологічні студії

– in parsers and segmentation rules;
– searching certain words or strings;
– replacing words or characters;
– extracting strings for translation;
– creating checklists for QA;
– QA of translation memories [4];
– post-editing MT [5; 1].
Below I will show some examples of how exactly

they can be used.
1.1. Finding different spellings of the same word
Regular expressions can help you effectively pro-

cess your text when you have to repeat some actions
with strings many times.

Thus, if your text contains different writing varia-
tions of the same word as shown in Figure 4, you can
easily match all of them and replace them with one
form to reach consistency in the whole text. For that,
you just use a simple regular expression consisting
of two signs: “.” means any symbol, and “?” means
that the previous symbol is optional (Fig. 5). In such
a way you can find all three forms, “top-coat”, “top-
coat” and “top coat”.

In Figure 6 you can see how you can with the help
of regular expressions replace non-consequent spell-
ing of the word with the consequent one.

1.2. Finding word forms
Not all CAT-Tools support flexions search. If you

work with inflected languages, it might be beneficial
for you to use simple regular expressions to find all
the word forms you need at once. Sign “.” means any
digit, sign “+” means one or more times. So, their
combination helps you to find the stem “модул” with
any possible continuation (Fig. 7).

1.3. Finding the source and target segments
with different punctuation

Regular expression can also be used to check
whether the source and target sentences have the same
punctuation. Thus, in Figure 8 you can find all seg-
ments in your translation, where the source has a dot
in the end and the target does not, and correct it.

1.4. Finding source and target segments with
different capitalization

Thanks to the option to refer to the beginning
of the line, regular expressions can also be helpful while

Fig. 3. Finding all words of 12 and more letters

Fig. 4. Task to find different spellings of the word

240

Випуск 16. Том 1

checking whether segments have equal capitalization.
In Figure 9, you can see an example where target seg-
ments start with lowercase words, and simple regexes
used within a CAT-Tool help identify such cases.

1.5. Replace the decimal separator
In Figure 10 you can see the regular expression

with which we can easily change the decimal separa-
tor in different document segments at once. In the Find
line, you have two groups consisting of one or more
digits, and these groups are divided with a comma.
In the Replace line, you refer to these groups with
the sign $ and their number and put a dot between
them, replacing the comma as a decimal separator.

1.6. Find and delete the odd article in
the machine translation output

Machine translation output often contains reoc-
curring mistakes. You can use regular expressions
to correct particular type of such mistakes. For

example: in Figure 11, you can see the odd article
“el,” which was placed before the different names
of the operating systems: Windows, Linux, Mac OS.
With regular expressions, you can remove the article
in all these cases. Thus, in Figure 12 in the Find line,
we are looking for all three names of operational sys-
tems alternatively, before which “el” is placed, hav-
ing built a corresponding group, and replace it with
the group only, without article, in the line Replace.

2. The basics of regular expressions
Regular expressions are not difficult to learn,

and even their basics can be very useful in translation
processes. It is important to understand the principles
how regular expressions work and not to learn all
the technical signs and their functionality by heart.
To better conceive the functionality, it may be helpful
to divide the characters, which are used while writing
regular expressions, into several categories.

Fig. 5. Finding different spellings of the word with regular expressions

Fig. 6. Considering the different capitalization while searching and replacing

241

Закарпатські філологічні студії

2.1. Literal characters
These are the actual characters contained in

the string we need to find, f.i., letters, numbers,
punctuation etc. For this category, there is one spe-

Fig. 7. Finding word forms in inflected languages

Fig. 8. Checking punctuation in source and target segments

Fig. 9. Checking capitalization in source and target segments

cial aspect: those characters, for which some regex
functionality is reserved, must be escaped with a “\”
sign, so that to search for a dot, you have to type “\.”
and not just “.”.

242

Випуск 16. Том 1

However, if you, for example, want to find all
the prepositions “for” in a text, the usual search finds
also “for” as a part of the word. You can add spaces
around “for”, but then you won’t find places with
punctuation after it. To solve this problem, we have
a further category of the signs in regular expressions.

2.2. Metacharacters
These characters help us to find some classes

of signs in a string. Thus, \d finds all digits, whereas
\D., to the contrary, finds all non-digit charac-
ters. Similarly, \w finds all alphanumeric symbols,
whereas \W finds all non-alphanumeric symbols.

Next, \s finds spaces, \S finds non-spaces, \b finds
all word boundaries.

So, to find for only as a separate word even before
some punctuation, you have to use the word boundar-
ies: \bfor\b.

Another very widely used metacharacter is “.”, which
stands for any character. So, for example, the search \
bth.n\b will find “thin”, “than,” and “then” at once.

2.3. Quantifiers
Quantifiers allow us to specify the quantity

of the particular character or group of characters.
There are several ways to indicate it:

Fig. 10. Replacing the decimal separator

 Fig. 11. Odd article in the MT-output

243

Закарпатські філологічні студії

Fig. 12. Removing the odd article while post-editing

Fig. 13. Task to extract a string for translation

* stands for 0 or more repetitions of the character.
Thus, \btaken*\b finds strings like take, taken, tak-
enn, takennn.

+ stands for one or more repetitions. For example,
\d+ finds numbers of one and more digits like 3, 34,
345, 3456, etc.

? stands for optionality, i.e., 0 or 1. Thus, search
\bstudents?\b finds both forms student and students.

{} allow specifying the particular number
of the characters. Thus, ll{2} means we want to find
all double ll in words, while \b[a-z]{6,9}\b means we
search for all words with the length of 6 to 9 char-
acters. The form \b[a-z]{9,}, further, finds all words
of 9 and more characters.

2.4. Character classes
Square brackets help us to search for some range

of characters. In particular, if you just list the char-
acters within square brackets, you then search any

of the listed ones. Thus, [abc] find any letter a, b or
c only one time, [new] finds one of the listed charac-
ters one time, etc. If you use a dash, you can search
within some range: [a–z] finds any letter from a to z
and [0–9] – any digit from 0 to 9. Circumflex helps
to search all except for the listed characters: [^a–k]
finds all letters after k in the alphabet.

2.5 Groups
Parentheses help to find precisely this particu-

lar string. F.i. \b(new)\b finds exactly the word new
and nothing else. Besides this, parentheses allow us
to operate with these groups by backreferencing them
with the sign $ and the number of the group. Thus,
to extract the author in the metadata in Fig. 13, we
can use the expression author={([\w\s,]+)} and then
replace it with the group backreference $1. Using
groups is the perfect way to extract from text the nec-
essary data.

244

Випуск 16. Том 1

3. Regular expressions in text processing
environments

We have already described above, in section 2,
how regular expressions can be used in transla-
tion processes. Except for this, they are also built
in many text processing environments like corpus
managers or text editors. Programming languages,
too, have special libraries for regular expressions,
which allow using their functionality while writ-
ing code.

In Fig. 14 you can see an example of how reg-
ular expressions can be used in the AntConc cor-
pus manager for searching all the constructions
“adjective+noun” in the annotated corpus:

In Fig. 15 you can see an example, how one can
import a regular expression library while writing
code in Python and use regular expressions to split
the corpus in sentences by such punctuation marks as
“.”, “!” and “?”.

After learning the basics of regular expressions, pre-
sented above, you can already use them for your spe-
cific purposes while processing text in different ways.

Conclusions. As we can see, the basics of regu-
lar expressions are not complicated to learn and they
can give us a lot of advantage while processing text in
many different surroundings. Thus, we consider it to
be reasonable to integrate the course of regular expres-
sions into the translation and linguistic curricula.

Fig. 15. Regular expressions used in Python code

Fig. 14. Regular expressions functionality in corpus manager

REFERENCES:
1. Arenas A.G., Moorkens J. Machine translation and post-editing training as part of a master’s programme. The

Journal of Specialised Translation. 2019. Pp. 217–238.
2. Câmpeanu C., Santean N. On the intersection of regex languages with regular languages. Theoretical

Computer Science. No. 410 (2009), Pp. 2336–2344. URL: https://core.ac.uk/download/pdf/82684254.pdf.

245

Закарпатські філологічні студії

3. Dorosz K., Szczerbińska A. Enhancing regular expressions for Polish text processing. Computer Science.
Vol. 10, 2009. Pp. 19–35.

4. Gintrowicz J., Jassem K. Using Regular Expressions in Translation Memories: Systems Science. January
2008. Pp. 87–92.

5. Guzmán R. Automating MT post-editing using regular expressions. Multilingual. No. 90. 2007. Volume 18.
Issue 6. Pp. 49–52.

6. Mosel U. Advances in the accountability of grammatical analysis and description by using regular expressions.
Language Documentation & Conservation Special Publication. No. 4 (October 2012). Electronic Grammaticography
ed. by Sebastian Nordhoff. Pp. 235–250.

7. Regular Expressions: An Introduction for Translators. The ATA Chronicle. American Translators Association.
URL: https://www.ata-chronicle.online/highlights/regular-expressions-an-introduction-for-translators/.

8. The Oxford Handbook of Computational Linguistics. OUP Oxford. 2004. 786. P. 754.
9. Wang P., Bai G.R., Stolee K.T. Exploring Regular Expression Evolution. Computer Science. 2019. URL:

https://wangpeipei90.github.io/papers/saner2019_preprint.pdf.

